20402076 - AM210 - ANALISI MATEMATICA 3

I. Acquisire una buona conoscenza della teoria delle serie e succesioni di funzioni su R.
II. Sviluppare ed acquisire i metodi della teoria delle funzioni continue e delle funzioni regolari in più variabili reali.


Curriculum

scheda docente | materiale didattico

Programma

0. Serie numeriche
Definizione e criteri di convergenza.

1. Successioni e serie di funzioni
Convergenza puntuale, convergenza uniforme.
Convergenza totale di serie di funzioni.
Serie di potenze, serie di Fourier.

2. Funzioni di n variabili reali
Spazi vettoriali. Prodotto scalare (disuguaglianza di Cauchy-Schwarz), norma, distanza,
topologia standard, compattezza in Rn .

Funzioni continue da Rn in Rm. Continuita' ed uniforme continuita'. Teorema di Weierstrass.
Definizioni di derivata parziale e direzionale, funzioni differenziabili,
gradiente, Prop.: una funzione differenziabile continua e ha tutte le derivate direzionali.
Teorema del differenziale totale Lemma di Schwarz. Funzioni
Ck, regola della catena . Matrice hessiana.
Formula di Taylor al secondo ordine. Punti stazionari massimi e minimi
Matrici definite positive.
Prop: i punti di massimo o minimo sono punti critici; i punti critici in cui la
matrice Hessiana e’ definita positiva (negativa) sono punti di minimo (massimo); i punti
critici in cui la matrice Hessiana ha un autovalore positivo e uno negativo sono selle.
Funzioni differenziabili da Rn ad Rm; Matrice jacobiana. Matrice jacobiana della
composizione.

3. Spazi normati e spazi di Banach
Esempi. Successioni convergenti e di Cauchy . Norme equivalenti . Equivalenza delle norme in Rn. Lo spazio delle
funzioni continue con la norma del sup uno spazio di Banach.
Il teorema del punto fisso in spazi di Banach.
Teorema della funzione implicita e della funzione inversa.

Testi Adottati

Analisi Matematica II, Giusti - Analisi Matematica II, Chierchia

Modalità Erogazione

4 ore di didattica frontale 2 di esercitazione due di tutorato a settimana.

Modalità Frequenza

la frequenza del corso e' caldamente consigliata

Modalità Valutazione

La prova scritta verte sugli argomenti svolti in classe e tende a verificare la capacita' di risolvere esercizi. E' composta da 4 esercizi sugli argomenti trattati in classe. La prova orale serve a verificare la capacita' di presentare e dimostrare i teoremi svolti in classe e applicarli in casi specifici.

scheda docente | materiale didattico

Programma

Parte 1: Assiomatica di R e suoi sottoinsiemi principali
Definizione assiomatica di R.
Insiemi induttivi; definizione di N e principio di induzione.
Definizione di Z e Q; Z è un anello, Q è un campo.
Radici ennesime; potenze razionali.

Parte 2: Teoria dei limiti
La retta estesa R*: intervalli, intorni e punti di accumulazione.
Limiti di funzioni in R*.
Teoremi di confronto.
Limiti laterali; limiti di funzioni monotone.
Algebra dei limiti su R e R*.
Limite di composizione di funzioni.
Limiti di funzioni inverse.
Limiti notevoli. Il numero di Nepero.
Funzioni esponenziali e trigonometriche.

Parte 3: Funzioni continue
Topologia di R.
Teorema di esistenza degli zeri.
Teoremi di Bolzano-Weierstrass.
Teorema di Weierstrass.
Funzioni uniformemente continue.

Parte 4: Funzioni derivabili
Regole di derivazione. Derivate delle funzioni elementari.
Minimi e massimi locali e teoremi elementari sulle derivate (Fermat, Rolle, Cauchy,
Lagrange).
Teorema di Bernoulli-Hopital.
Convessità.
Formule di Taylor.

Parte 5: Integrale di Riemann in R
L’integrale di Riemann e sue proprietà fondamentali.
Criteri di integrabilità. Integrabilità di funzioni continue e monotone.
Il Teorema fondamentale del calcolo e sue applicazioni
(integrazione per parti, cambi di variabile nell’integrazione).
Integrali generalizzati (“impropri”) e relativi criteri di integrabilità.

Testi Adottati

Luigi Chierchia: Corso di analisi. Prima parte. Una introduzione rigorosa all'analisi matematica su R
McGraw-Hill Education Collana: Collana di istruzione scientifica
Data di Pubblicazione: giugno 2019
EAN: 9788838695438 ISBN: 8838695431
Pagine: XI-374 Formato: brossura
https://www.mheducation.it/9788838695438-italy-corso-di-analisi-prima-parte

Testi di esercizi:
Giusti, E.: Esercizi e complementi di Analisi Matematica, Volume Primo, Bollati Boringhieri, 2000
Demidovich, B.P., Esercizi e problemi di Analisi Matematica, Editori Riuniti, 2010

Modalità Erogazione

Lezioni frontali ed esercitazioni. Tutto il materiale del programma verra spiegato a lezione. Le lezioni/esercitazioni includeranno un dialogo continuo con gli studenti: il feedback da parte degli studenti durante il corso è strumento fondamentale per la buona riuscita del corso stesso. Nel caso di un prolungamento dell’emergenza sanitaria da COVID-19 saranno recepite tutte le disposizioni (di Stato e dell'Università Roma Tre) che regolino le modalità di svolgimento delle attività didattiche . In particolare, lezioni a distanza potrebbero essere necessarie.

Modalità Frequenza

La frequenza è facoltativa e la comprensione del testo adottato è sufficiente per la piena fruizione del corso. Naturalmente la frequenza è auspicabile e FORTEMENTE consigliata essendo l'interazione tra docente e studenti strumento didattico fondamentale e irripetibile.

Modalità Valutazione

La valutazione è basata su una prova scritta e su una prova orale. Sono previste due prove scritte in itinere che, in caso di esito positivo, sostituiscono la prova scritta finale. Esempi di prove degli anni passati saranno disponibili in rete sul sito web dedicato al corso che verrà costantemente aggiornato dal docente. Nel caso di un prolungamento dell’emergenza sanitaria da COVID-19 saranno recepite tutte le disposizioni (di Stato e dell'Università Roma Tre) che regolino le modalità della valutazione degli studenti. In particolare, valutazioni a distanza potrebbero essere necessarie ed in tal caso la valutazione sarà di tipo orale preceduta da una prova scritta preliminare parte integrante dell'esame orale.

scheda docente | materiale didattico

Programma

0. Serie numeriche
Definizione e criteri di convergenza.

1. Successioni e serie di funzioni
Convergenza puntuale, convergenza uniforme.
Convergenza totale di serie di funzioni.
Serie di potenze, serie di Fourier.

2. Funzioni di n variabili reali
Spazi vettoriali. Prodotto scalare (disuguaglianza di Cauchy-Schwarz), norma, distanza,
topologia standard, compattezza in Rn .

Funzioni continue da Rn in Rm. Continuita' ed uniforme continuita'. Teorema di Weierstrass.
Definizioni di derivata parziale e direzionale, funzioni differenziabili,
gradiente, Prop.: una funzione differenziabile continua e ha tutte le derivate direzionali.
Teorema del differenziale totale Lemma di Schwarz. Funzioni
Ck, regola della catena . Matrice hessiana.
Formula di Taylor al secondo ordine. Punti stazionari massimi e minimi
Matrici definite positive.
Prop: i punti di massimo o minimo sono punti critici; i punti critici in cui la
matrice Hessiana e’ definita positiva (negativa) sono punti di minimo (massimo); i punti
critici in cui la matrice Hessiana ha un autovalore positivo e uno negativo sono selle.
Funzioni differenziabili da Rn ad Rm; Matrice jacobiana. Matrice jacobiana della
composizione.

3. Spazi normati e spazi di Banach
Esempi. Successioni convergenti e di Cauchy . Norme equivalenti . Equivalenza delle norme in Rn. Lo spazio delle
funzioni continue con la norma del sup uno spazio di Banach.
Il teorema del punto fisso in spazi di Banach.
Teorema della funzione implicita e della funzione inversa.

Testi Adottati

Analisi Matematica II, Giusti - Analisi Matematica II, Chierchia

Modalità Erogazione

4 ore di didattica frontale 2 di esercitazione due di tutorato a settimana.

Modalità Frequenza

la frequenza del corso e' caldamente consigliata

Modalità Valutazione

La prova scritta verte sugli argomenti svolti in classe e tende a verificare la capacita' di risolvere esercizi. E' composta da 4 esercizi sugli argomenti trattati in classe. La prova orale serve a verificare la capacita' di presentare e dimostrare i teoremi svolti in classe e applicarli in casi specifici.

scheda docente | materiale didattico

Programma

Parte 1: Assiomatica di R e suoi sottoinsiemi principali
Definizione assiomatica di R.
Insiemi induttivi; definizione di N e principio di induzione.
Definizione di Z e Q; Z è un anello, Q è un campo.
Radici ennesime; potenze razionali.

Parte 2: Teoria dei limiti
La retta estesa R*: intervalli, intorni e punti di accumulazione.
Limiti di funzioni in R*.
Teoremi di confronto.
Limiti laterali; limiti di funzioni monotone.
Algebra dei limiti su R e R*.
Limite di composizione di funzioni.
Limiti di funzioni inverse.
Limiti notevoli. Il numero di Nepero.
Funzioni esponenziali e trigonometriche.

Parte 3: Funzioni continue
Topologia di R.
Teorema di esistenza degli zeri.
Teoremi di Bolzano-Weierstrass.
Teorema di Weierstrass.
Funzioni uniformemente continue.

Parte 4: Funzioni derivabili
Regole di derivazione. Derivate delle funzioni elementari.
Minimi e massimi locali e teoremi elementari sulle derivate (Fermat, Rolle, Cauchy,
Lagrange).
Teorema di Bernoulli-Hopital.
Convessità.
Formule di Taylor.

Parte 5: Integrale di Riemann in R
L’integrale di Riemann e sue proprietà fondamentali.
Criteri di integrabilità. Integrabilità di funzioni continue e monotone.
Il Teorema fondamentale del calcolo e sue applicazioni
(integrazione per parti, cambi di variabile nell’integrazione).
Integrali generalizzati (“impropri”) e relativi criteri di integrabilità.

Testi Adottati

Luigi Chierchia: Corso di analisi. Prima parte. Una introduzione rigorosa all'analisi matematica su R
McGraw-Hill Education Collana: Collana di istruzione scientifica
Data di Pubblicazione: giugno 2019
EAN: 9788838695438 ISBN: 8838695431
Pagine: XI-374 Formato: brossura
https://www.mheducation.it/9788838695438-italy-corso-di-analisi-prima-parte

Testi di esercizi:
Giusti, E.: Esercizi e complementi di Analisi Matematica, Volume Primo, Bollati Boringhieri, 2000
Demidovich, B.P., Esercizi e problemi di Analisi Matematica, Editori Riuniti, 2010

Modalità Erogazione

Lezioni frontali ed esercitazioni. Tutto il materiale del programma verra spiegato a lezione. Le lezioni/esercitazioni includeranno un dialogo continuo con gli studenti: il feedback da parte degli studenti durante il corso è strumento fondamentale per la buona riuscita del corso stesso. Nel caso di un prolungamento dell’emergenza sanitaria da COVID-19 saranno recepite tutte le disposizioni (di Stato e dell'Università Roma Tre) che regolino le modalità di svolgimento delle attività didattiche . In particolare, lezioni a distanza potrebbero essere necessarie.

Modalità Frequenza

La frequenza è facoltativa e la comprensione del testo adottato è sufficiente per la piena fruizione del corso. Naturalmente la frequenza è auspicabile e FORTEMENTE consigliata essendo l'interazione tra docente e studenti strumento didattico fondamentale e irripetibile.

Modalità Valutazione

La valutazione è basata su una prova scritta e su una prova orale. Sono previste due prove scritte in itinere che, in caso di esito positivo, sostituiscono la prova scritta finale. Esempi di prove degli anni passati saranno disponibili in rete sul sito web dedicato al corso che verrà costantemente aggiornato dal docente. Nel caso di un prolungamento dell’emergenza sanitaria da COVID-19 saranno recepite tutte le disposizioni (di Stato e dell'Università Roma Tre) che regolino le modalità della valutazione degli studenti. In particolare, valutazioni a distanza potrebbero essere necessarie ed in tal caso la valutazione sarà di tipo orale preceduta da una prova scritta preliminare parte integrante dell'esame orale.