Il corso di Statistica ha carattere istituzionale e si propone di introdurre gli studenti alle tecniche di rilevazione, di organizzazione e di analisi dei dati statistici. Il corso si propone anche di introdurre gli studenti ai concetti basilari del calcolo della probabilità e dell’inferenza statistica per l’analisi di dati statistici derivanti da indagini campionarie; particolare attenzione verrà rivolta ai contesti aziendali ed economici e sociali.
Curriculum
scheda docente
materiale didattico
Concetti introduttivi: Caratteri statistici e scale di misura. Distribuzioni semplici. Rappresentazioni tabellari e grafiche. Funzione di ripartizione empirica.
Indici di dimensione: Moda. Mediana. Quantili. Media aritmetica.
Indici di Variabilità: Scostamenti medi. Varianza. Coefficiente di variazione. Differenza interquartile.
Indici di forma: Asimmetria di una distribuzione: indici e rappresentazioni grafiche.
Distribuzioni doppie: distribuzioni di frequenza; distribuzioni condizionate; indipendenza. Misure di associazione tra due variabili. Correlazione.
Calcolo delle probabilità:
Definizione assiomatica di probabilità. Probabilità condizionata. Indipendenza. Teorema di Bayes. Variabili aleatorie undimensionali discrete. Funzione di probabilità, di densità, di ripartizione. Momenti di variabili aleatorie. Principali distribuzioni di probabilità discrete: binomiale, uniforme.
Principali distribuzioni di probabilità continue: uniforme, normale.
Variabili aleatorie multiple: funzioni di probabilità marginali e condizionate, indipendenza e correlazione.
Proprietà delle distribuzioni di probabilità: combinazioni lineari di variabili aleatorie, convergenza, legge dei grandi numeri e teorema del limite centrale.
Inferenza Statistica:
Popolazione e campione: popolazioni finite e infinite; campione casuale da popolazioni finite e infinite; distribuzione di probabilità del campione casuale.
Statistiche campionarie e loro distribuzioni: distribuzione campionaria della media; distribuzione campionaria della varianza.
Stima dei parametri: proprietà degli stimatori; il metodo della massima verosimiglianza; intervallo di confidenza per una media.
Verifica di ipotesi: elementi di teoria dei test: errori di prima e di seconda specie; verifica di ipotesi su una media; verifica dell'ipotesi sul parametro di una popolaziione dicotomica. p-values.
Regressione e correlazione: Regressione lineare semplice stima e verifica d'ipotesi sui parametri della retta di regressione.
In alternativa uno dei seguenti testi:
S. Borra, A. Di Ciaccio. Statistica: metodologie per le scienze economiche e sociali. McGraw-Hill Education (2014)
D. Piccolo Statistica per le decisioni - ed. Il mulino 2004
Fruizione: 21210113 STATISTICA in Economia e gestione aziendale L-18 A - D FORTUNA FRANCESCA
Programma
Statistica descrittiva:Concetti introduttivi: Caratteri statistici e scale di misura. Distribuzioni semplici. Rappresentazioni tabellari e grafiche. Funzione di ripartizione empirica.
Indici di dimensione: Moda. Mediana. Quantili. Media aritmetica.
Indici di Variabilità: Scostamenti medi. Varianza. Coefficiente di variazione. Differenza interquartile.
Indici di forma: Asimmetria di una distribuzione: indici e rappresentazioni grafiche.
Distribuzioni doppie: distribuzioni di frequenza; distribuzioni condizionate; indipendenza. Misure di associazione tra due variabili. Correlazione.
Calcolo delle probabilità:
Definizione assiomatica di probabilità. Probabilità condizionata. Indipendenza. Teorema di Bayes. Variabili aleatorie undimensionali discrete. Funzione di probabilità, di densità, di ripartizione. Momenti di variabili aleatorie. Principali distribuzioni di probabilità discrete: binomiale, uniforme.
Principali distribuzioni di probabilità continue: uniforme, normale.
Variabili aleatorie multiple: funzioni di probabilità marginali e condizionate, indipendenza e correlazione.
Proprietà delle distribuzioni di probabilità: combinazioni lineari di variabili aleatorie, convergenza, legge dei grandi numeri e teorema del limite centrale.
Inferenza Statistica:
Popolazione e campione: popolazioni finite e infinite; campione casuale da popolazioni finite e infinite; distribuzione di probabilità del campione casuale.
Statistiche campionarie e loro distribuzioni: distribuzione campionaria della media; distribuzione campionaria della varianza.
Stima dei parametri: proprietà degli stimatori; il metodo della massima verosimiglianza; intervallo di confidenza per una media.
Verifica di ipotesi: elementi di teoria dei test: errori di prima e di seconda specie; verifica di ipotesi su una media; verifica dell'ipotesi sul parametro di una popolaziione dicotomica. p-values.
Regressione e correlazione: Regressione lineare semplice stima e verifica d'ipotesi sui parametri della retta di regressione.
Testi Adottati
Cicchitelli, P.D'Urso, M.Minozzo. Statistica: principi e metodi. Pearson, terza edizione (2017).In alternativa uno dei seguenti testi:
S. Borra, A. Di Ciaccio. Statistica: metodologie per le scienze economiche e sociali. McGraw-Hill Education (2014)
D. Piccolo Statistica per le decisioni - ed. Il mulino 2004
Modalità Erogazione
Il corso di norma prevede lezioni frontali in aula. Sono previste 2 ore di esercitazioni settimanali per tutta la durata del corso. Nel caso di un prolungamento dell’emergenza sanitaria da COVID-19 saranno recepite tutte le disposizioni che regolino le modalità di svolgimento delle attività didattiche e della valutazione degli studenti. In particolare, si applicheranno le seguenti modalità: modalità a distanza, mediante la distribuzione di dispense, di raccolte di esercizi, di registrazioni audio in diretta e in differita.Modalità Valutazione
L’esame consiste in una prova scritta, con svolgimento di esercizi e domande teoriche. La prova si ritiene superata se la sufficienza è raggiunta sia nella parte pratica che in quella teorica. Non è consentito introdurre alcun formulario e/o libro nell’aula d’esame. È consentito portare solo le tavole delle distribuzioni di probabilità nel formato reso disponibile sul sito web del corso. Un candidato che abbia superato con la sufficienza la prova scritta può richiedere che gli venga verbalizzato il voto conseguito nello scritto, a meno che la prova orale non sia richiesta dal docente. Nel caso di un prolungamento dell’emergenza sanitaria da COVID-19 saranno recepite tutte le disposizioni che regolino le modalità di svolgimento delle attività didattiche e della valutazione degli studenti. In particolare, si applicheranno le seguenti modalità: l’esame si svolgerà in forma orale a distanza, anziché scritta.
scheda docente
materiale didattico
Concetti introduttivi: Caratteri statistici e scale di misura. Distribuzioni semplici. Rappresentazioni tabellari e grafiche. Funzione di ripartizione empirica.
Indici di dimensione: Moda. Mediana. Quantili. Media aritmetica.
Indici di Variabilità: Scostamenti medi. Varianza. Coefficiente di variazione. Differenza interquartile.
Indici di forma: Asimmetria di una distribuzione: indici e rappresentazioni grafiche.
Distribuzioni doppie: distribuzioni di frequenza; distribuzioni condizionate; indipendenza. Misure di associazione tra due variabili. Correlazione.
Calcolo delle probabilità:
Definizione assiomatica di probabilità. Probabilità condizionata. Indipendenza. Teorema di Bayes. Variabili aleatorie undimensionali discrete. Funzione di probabilità, di densità, di ripartizione. Momenti di variabili aleatorie. Principali distribuzioni di probabilità discrete: binomiale, uniforme.
Principali distribuzioni di probabilità continue: uniforme, normale.
Variabili aleatorie multiple: funzioni di probabilità marginali e condizionate, indipendenza e correlazione.
Proprietà delle distribuzioni di probabilità: combinazioni lineari di variabili aleatorie, convergenza, legge dei grandi numeri e teorema del limite centrale.
Inferenza Statistica:
Popolazione e campione: popolazioni finite e infinite; campione casuale da popolazioni finite e infinite; distribuzione di probabilità del campione casuale.
Statistiche campionarie e loro distribuzioni: distribuzione campionaria della media; distribuzione campionaria della varianza.
Stima dei parametri: proprietà degli stimatori; il metodo della massima verosimiglianza; intervallo di confidenza per una media.
Verifica di ipotesi: elementi di teoria dei test: errori di prima e di seconda specie; verifica di ipotesi su una media; verifica dell'ipotesi sul parametro di una popolaziione dicotomica. p-values.
Regressione e correlazione: Regressione lineare semplice stima e verifica d'ipotesi sui parametri della retta di regressione.
In alternativa uno dei seguenti testi:
S. Borra, A. Di Ciaccio. Statistica: metodologie per le scienze economiche e sociali. McGraw-Hill Education (2014)
D. Piccolo Statistica per le decisioni - ed. Il mulino 2004
Fruizione: 21210113 STATISTICA in Economia e gestione aziendale L-18 A - D FORTUNA FRANCESCA
Programma
Statistica descrittiva:Concetti introduttivi: Caratteri statistici e scale di misura. Distribuzioni semplici. Rappresentazioni tabellari e grafiche. Funzione di ripartizione empirica.
Indici di dimensione: Moda. Mediana. Quantili. Media aritmetica.
Indici di Variabilità: Scostamenti medi. Varianza. Coefficiente di variazione. Differenza interquartile.
Indici di forma: Asimmetria di una distribuzione: indici e rappresentazioni grafiche.
Distribuzioni doppie: distribuzioni di frequenza; distribuzioni condizionate; indipendenza. Misure di associazione tra due variabili. Correlazione.
Calcolo delle probabilità:
Definizione assiomatica di probabilità. Probabilità condizionata. Indipendenza. Teorema di Bayes. Variabili aleatorie undimensionali discrete. Funzione di probabilità, di densità, di ripartizione. Momenti di variabili aleatorie. Principali distribuzioni di probabilità discrete: binomiale, uniforme.
Principali distribuzioni di probabilità continue: uniforme, normale.
Variabili aleatorie multiple: funzioni di probabilità marginali e condizionate, indipendenza e correlazione.
Proprietà delle distribuzioni di probabilità: combinazioni lineari di variabili aleatorie, convergenza, legge dei grandi numeri e teorema del limite centrale.
Inferenza Statistica:
Popolazione e campione: popolazioni finite e infinite; campione casuale da popolazioni finite e infinite; distribuzione di probabilità del campione casuale.
Statistiche campionarie e loro distribuzioni: distribuzione campionaria della media; distribuzione campionaria della varianza.
Stima dei parametri: proprietà degli stimatori; il metodo della massima verosimiglianza; intervallo di confidenza per una media.
Verifica di ipotesi: elementi di teoria dei test: errori di prima e di seconda specie; verifica di ipotesi su una media; verifica dell'ipotesi sul parametro di una popolaziione dicotomica. p-values.
Regressione e correlazione: Regressione lineare semplice stima e verifica d'ipotesi sui parametri della retta di regressione.
Testi Adottati
Cicchitelli, P.D'Urso, M.Minozzo. Statistica: principi e metodi. Pearson, terza edizione (2017).In alternativa uno dei seguenti testi:
S. Borra, A. Di Ciaccio. Statistica: metodologie per le scienze economiche e sociali. McGraw-Hill Education (2014)
D. Piccolo Statistica per le decisioni - ed. Il mulino 2004
Modalità Erogazione
Il corso di norma prevede lezioni frontali in aula. Sono previste 2 ore di esercitazioni settimanali per tutta la durata del corso. Nel caso di un prolungamento dell’emergenza sanitaria da COVID-19 saranno recepite tutte le disposizioni che regolino le modalità di svolgimento delle attività didattiche e della valutazione degli studenti. In particolare, si applicheranno le seguenti modalità: modalità a distanza, mediante la distribuzione di dispense, di raccolte di esercizi, di registrazioni audio in diretta e in differita.Modalità Valutazione
L’esame consiste in una prova scritta, con svolgimento di esercizi e domande teoriche. La prova si ritiene superata se la sufficienza è raggiunta sia nella parte pratica che in quella teorica. Non è consentito introdurre alcun formulario e/o libro nell’aula d’esame. È consentito portare solo le tavole delle distribuzioni di probabilità nel formato reso disponibile sul sito web del corso. Un candidato che abbia superato con la sufficienza la prova scritta può richiedere che gli venga verbalizzato il voto conseguito nello scritto, a meno che la prova orale non sia richiesta dal docente. Nel caso di un prolungamento dell’emergenza sanitaria da COVID-19 saranno recepite tutte le disposizioni che regolino le modalità di svolgimento delle attività didattiche e della valutazione degli studenti. In particolare, si applicheranno le seguenti modalità: l’esame si svolgerà in forma orale a distanza, anziché scritta.
scheda docente
materiale didattico
Concetti introduttivi: Caratteri statistici e scale di misura. Distribuzioni semplici. Rappresentazioni tabellari e grafiche. Funzione di ripartizione empirica.
Indici di dimensione: Moda. Mediana. Quantili. Media aritmetica.
Indici di Variabilità: Scostamenti medi. Varianza. Coefficiente di variazione. Differenza interquartile.
Indici di forma: Asimmetria di una distribuzione: indici e rappresentazioni grafiche.
Distribuzioni doppie: distribuzioni di frequenza; distribuzioni condizionate; indipendenza. Misure di associazione tra due variabili. Correlazione.
Calcolo delle probabilità:
Definizione assiomatica di probabilità. Probabilità condizionata. Indipendenza. Teorema di Bayes. Variabili aleatorie undimensionali discrete. Funzione di probabilità, di densità, di ripartizione. Momenti di variabili aleatorie. Principali distribuzioni di probabilità discrete: binomiale, uniforme.
Principali distribuzioni di probabilità continue: uniforme, normale.
Variabili aleatorie multiple: funzioni di probabilità marginali e condizionate, indipendenza e correlazione.
Proprietà delle distribuzioni di probabilità: combinazioni lineari di variabili aleatorie, convergenza, legge dei grandi numeri e teorema del limite centrale.
Inferenza Statistica:
Popolazione e campione: popolazioni finite e infinite; campione casuale da popolazioni finite e infinite; distribuzione di probabilità del campione casuale.
Statistiche campionarie e loro distribuzioni: distribuzione campionaria della media; distribuzione campionaria della varianza.
Stima dei parametri: proprietà degli stimatori; il metodo della massima verosimiglianza; intervallo di confidenza per una media.
Verifica di ipotesi: elementi di teoria dei test: errori di prima e di seconda specie; verifica di ipotesi su una media; verifica dell'ipotesi sul parametro di una popolaziione dicotomica. p-values.
Regressione e correlazione: Regressione lineare semplice stima e verifica d'ipotesi sui parametri della retta di regressione.
In alternativa uno dei seguenti testi:
S. Borra, A. Di Ciaccio. Statistica: metodologie per le scienze economiche e sociali. McGraw-Hill Education (2014)
D. Piccolo Statistica per le decisioni - ed. Il mulino 2004
Fruizione: 21210113 STATISTICA in Economia e gestione aziendale L-18 A - D FORTUNA FRANCESCA
Programma
Statistica descrittiva:Concetti introduttivi: Caratteri statistici e scale di misura. Distribuzioni semplici. Rappresentazioni tabellari e grafiche. Funzione di ripartizione empirica.
Indici di dimensione: Moda. Mediana. Quantili. Media aritmetica.
Indici di Variabilità: Scostamenti medi. Varianza. Coefficiente di variazione. Differenza interquartile.
Indici di forma: Asimmetria di una distribuzione: indici e rappresentazioni grafiche.
Distribuzioni doppie: distribuzioni di frequenza; distribuzioni condizionate; indipendenza. Misure di associazione tra due variabili. Correlazione.
Calcolo delle probabilità:
Definizione assiomatica di probabilità. Probabilità condizionata. Indipendenza. Teorema di Bayes. Variabili aleatorie undimensionali discrete. Funzione di probabilità, di densità, di ripartizione. Momenti di variabili aleatorie. Principali distribuzioni di probabilità discrete: binomiale, uniforme.
Principali distribuzioni di probabilità continue: uniforme, normale.
Variabili aleatorie multiple: funzioni di probabilità marginali e condizionate, indipendenza e correlazione.
Proprietà delle distribuzioni di probabilità: combinazioni lineari di variabili aleatorie, convergenza, legge dei grandi numeri e teorema del limite centrale.
Inferenza Statistica:
Popolazione e campione: popolazioni finite e infinite; campione casuale da popolazioni finite e infinite; distribuzione di probabilità del campione casuale.
Statistiche campionarie e loro distribuzioni: distribuzione campionaria della media; distribuzione campionaria della varianza.
Stima dei parametri: proprietà degli stimatori; il metodo della massima verosimiglianza; intervallo di confidenza per una media.
Verifica di ipotesi: elementi di teoria dei test: errori di prima e di seconda specie; verifica di ipotesi su una media; verifica dell'ipotesi sul parametro di una popolaziione dicotomica. p-values.
Regressione e correlazione: Regressione lineare semplice stima e verifica d'ipotesi sui parametri della retta di regressione.
Testi Adottati
Cicchitelli, P.D'Urso, M.Minozzo. Statistica: principi e metodi. Pearson, terza edizione (2017).In alternativa uno dei seguenti testi:
S. Borra, A. Di Ciaccio. Statistica: metodologie per le scienze economiche e sociali. McGraw-Hill Education (2014)
D. Piccolo Statistica per le decisioni - ed. Il mulino 2004
Modalità Erogazione
Il corso di norma prevede lezioni frontali in aula. Sono previste 2 ore di esercitazioni settimanali per tutta la durata del corso. Nel caso di un prolungamento dell’emergenza sanitaria da COVID-19 saranno recepite tutte le disposizioni che regolino le modalità di svolgimento delle attività didattiche e della valutazione degli studenti. In particolare, si applicheranno le seguenti modalità: modalità a distanza, mediante la distribuzione di dispense, di raccolte di esercizi, di registrazioni audio in diretta e in differita.Modalità Valutazione
L’esame consiste in una prova scritta, con svolgimento di esercizi e domande teoriche. La prova si ritiene superata se la sufficienza è raggiunta sia nella parte pratica che in quella teorica. Non è consentito introdurre alcun formulario e/o libro nell’aula d’esame. È consentito portare solo le tavole delle distribuzioni di probabilità nel formato reso disponibile sul sito web del corso. Un candidato che abbia superato con la sufficienza la prova scritta può richiedere che gli venga verbalizzato il voto conseguito nello scritto, a meno che la prova orale non sia richiesta dal docente. Nel caso di un prolungamento dell’emergenza sanitaria da COVID-19 saranno recepite tutte le disposizioni che regolino le modalità di svolgimento delle attività didattiche e della valutazione degli studenti. In particolare, si applicheranno le seguenti modalità: l’esame si svolgerà in forma orale a distanza, anziché scritta.
scheda docente
materiale didattico
Concetti introduttivi: Caratteri statistici e scale di misura. Distribuzioni semplici. Rappresentazioni tabellari e grafiche. Funzione di ripartizione empirica.
Indici di dimensione: Moda. Mediana. Quantili. Media aritmetica.
Indici di Variabilità: Scostamenti medi. Varianza. Coefficiente di variazione. Differenza interquartile.
Indici di forma: Asimmetria di una distribuzione: indici e rappresentazioni grafiche.
Distribuzioni doppie: distribuzioni di frequenza; distribuzioni condizionate; indipendenza. Misure di associazione tra due variabili. Correlazione.
Calcolo delle probabilità:
Definizione assiomatica di probabilità. Probabilità condizionata. Indipendenza. Teorema di Bayes. Variabili aleatorie undimensionali discrete. Funzione di probabilità, di densità, di ripartizione. Momenti di variabili aleatorie. Principali distribuzioni di probabilità discrete: binomiale, uniforme.
Principali distribuzioni di probabilità continue: uniforme, normale.
Variabili aleatorie multiple: funzioni di probabilità marginali e condizionate, indipendenza e correlazione.
Proprietà delle distribuzioni di probabilità: combinazioni lineari di variabili aleatorie, convergenza, legge dei grandi numeri e teorema del limite centrale.
Inferenza Statistica:
Popolazione e campione: popolazioni finite e infinite; campione casuale da popolazioni finite e infinite; distribuzione di probabilità del campione casuale.
Statistiche campionarie e loro distribuzioni: distribuzione campionaria della media; distribuzione campionaria della varianza.
Stima dei parametri: proprietà degli stimatori; il metodo della massima verosimiglianza; intervallo di confidenza per una media.
Verifica di ipotesi: elementi di teoria dei test: errori di prima e di seconda specie; verifica di ipotesi su una media; verifica dell'ipotesi sul parametro di una popolaziione dicotomica. p-values.
Regressione e correlazione: Regressione lineare semplice stima e verifica d'ipotesi sui parametri della retta di regressione.
In alternativa uno dei seguenti testi:
S. Borra, A. Di Ciaccio. Statistica: metodologie per le scienze economiche e sociali. McGraw-Hill Education (2014)
D. Piccolo Statistica per le decisioni - ed. Il mulino 2004
Fruizione: 21210113 STATISTICA in Economia e gestione aziendale L-18 A - D FORTUNA FRANCESCA
Programma
Statistica descrittiva:Concetti introduttivi: Caratteri statistici e scale di misura. Distribuzioni semplici. Rappresentazioni tabellari e grafiche. Funzione di ripartizione empirica.
Indici di dimensione: Moda. Mediana. Quantili. Media aritmetica.
Indici di Variabilità: Scostamenti medi. Varianza. Coefficiente di variazione. Differenza interquartile.
Indici di forma: Asimmetria di una distribuzione: indici e rappresentazioni grafiche.
Distribuzioni doppie: distribuzioni di frequenza; distribuzioni condizionate; indipendenza. Misure di associazione tra due variabili. Correlazione.
Calcolo delle probabilità:
Definizione assiomatica di probabilità. Probabilità condizionata. Indipendenza. Teorema di Bayes. Variabili aleatorie undimensionali discrete. Funzione di probabilità, di densità, di ripartizione. Momenti di variabili aleatorie. Principali distribuzioni di probabilità discrete: binomiale, uniforme.
Principali distribuzioni di probabilità continue: uniforme, normale.
Variabili aleatorie multiple: funzioni di probabilità marginali e condizionate, indipendenza e correlazione.
Proprietà delle distribuzioni di probabilità: combinazioni lineari di variabili aleatorie, convergenza, legge dei grandi numeri e teorema del limite centrale.
Inferenza Statistica:
Popolazione e campione: popolazioni finite e infinite; campione casuale da popolazioni finite e infinite; distribuzione di probabilità del campione casuale.
Statistiche campionarie e loro distribuzioni: distribuzione campionaria della media; distribuzione campionaria della varianza.
Stima dei parametri: proprietà degli stimatori; il metodo della massima verosimiglianza; intervallo di confidenza per una media.
Verifica di ipotesi: elementi di teoria dei test: errori di prima e di seconda specie; verifica di ipotesi su una media; verifica dell'ipotesi sul parametro di una popolaziione dicotomica. p-values.
Regressione e correlazione: Regressione lineare semplice stima e verifica d'ipotesi sui parametri della retta di regressione.
Testi Adottati
Cicchitelli, P.D'Urso, M.Minozzo. Statistica: principi e metodi. Pearson, terza edizione (2017).In alternativa uno dei seguenti testi:
S. Borra, A. Di Ciaccio. Statistica: metodologie per le scienze economiche e sociali. McGraw-Hill Education (2014)
D. Piccolo Statistica per le decisioni - ed. Il mulino 2004
Modalità Erogazione
Il corso di norma prevede lezioni frontali in aula. Sono previste 2 ore di esercitazioni settimanali per tutta la durata del corso. Nel caso di un prolungamento dell’emergenza sanitaria da COVID-19 saranno recepite tutte le disposizioni che regolino le modalità di svolgimento delle attività didattiche e della valutazione degli studenti. In particolare, si applicheranno le seguenti modalità: modalità a distanza, mediante la distribuzione di dispense, di raccolte di esercizi, di registrazioni audio in diretta e in differita.Modalità Valutazione
L’esame consiste in una prova scritta, con svolgimento di esercizi e domande teoriche. La prova si ritiene superata se la sufficienza è raggiunta sia nella parte pratica che in quella teorica. Non è consentito introdurre alcun formulario e/o libro nell’aula d’esame. È consentito portare solo le tavole delle distribuzioni di probabilità nel formato reso disponibile sul sito web del corso. Un candidato che abbia superato con la sufficienza la prova scritta può richiedere che gli venga verbalizzato il voto conseguito nello scritto, a meno che la prova orale non sia richiesta dal docente. Nel caso di un prolungamento dell’emergenza sanitaria da COVID-19 saranno recepite tutte le disposizioni che regolino le modalità di svolgimento delle attività didattiche e della valutazione degli studenti. In particolare, si applicheranno le seguenti modalità: l’esame si svolgerà in forma orale a distanza, anziché scritta.